quotient space

faktorruum

olemus
vektorruumist \(V\) ja tema alamruumist \(W\)
moodustatud vektorruum \(V/W\), mille
skalaarid on \(V\) skalaarid ja
vektorid on faktorhulga \(V/\sim\) elemendid, kus
ekvivalents \(\sim\) defineeritakse seosega
\(v_1\sim v_2\; \equiv\; v_1-v_2\in W\)
= the vector space V/W formed from the vector space V and its subspace W, whose scalars are the scalars of V and the vectors are the elements of the factorial set V/∼

ülevaateid
https://mathworld.wolfram.com/QuotientSpace.html

https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)

https://en.wikipedia.org/wiki/Quotient_space_(topology)

Toimub laadimine

quotient space

faktorruum

olemus
vektorruumist \(V\) ja tema alamruumist \(W\)
moodustatud vektorruum \(V/W\), mille
skalaarid on \(V\) skalaarid ja
vektorid on faktorhulga \(V/\sim\) elemendid, kus
ekvivalents \(\sim\) defineeritakse seosega
\(v_1\sim v_2\; \equiv\; v_1-v_2\in W\)
= the vector space V/W formed from the vector space V and its subspace W, whose scalars are the scalars of V and the vectors are the elements of the factorial set V/∼

ülevaateid
https://mathworld.wolfram.com/QuotientSpace.html

https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)

https://en.wikipedia.org/wiki/Quotient_space_(topology)

Palun oodake...

Tõrge

quotient space

faktorruum

olemus
vektorruumist \(V\) ja tema alamruumist \(W\)
moodustatud vektorruum \(V/W\), mille
skalaarid on \(V\) skalaarid ja
vektorid on faktorhulga \(V/\sim\) elemendid, kus
ekvivalents \(\sim\) defineeritakse seosega
\(v_1\sim v_2\; \equiv\; v_1-v_2\in W\)
= the vector space V/W formed from the vector space V and its subspace W, whose scalars are the scalars of V and the vectors are the elements of the factorial set V/∼

ülevaateid
https://mathworld.wolfram.com/QuotientSpace.html

https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)

https://en.wikipedia.org/wiki/Quotient_space_(topology)

Andmete allalaadimisel või töötlemisel esines tehniline tõrge.
Vabandame!