# faktorruum

olemus
vektorruumist $$V$$ ja tema alamruumist $$W$$
moodustatud vektorruum $$V/W$$, mille
skalaarid on $$V$$ skalaarid ja
vektorid on faktorhulga $$V/\sim$$ elemendid, kus
ekvivalents $$\sim$$ defineeritakse seosega
$$v_1\sim v_2\; \equiv\; v_1-v_2\in W$$
= the vector space V/W formed from the vector space V and its subspace W, whose scalars are the scalars of V and the vectors are the elements of the factorial set V/∼

ülevaateid
https://mathworld.wolfram.com/QuotientSpace.html

https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)

https://en.wikipedia.org/wiki/Quotient_space_(topology)

# faktorruum

olemus
vektorruumist $$V$$ ja tema alamruumist $$W$$
moodustatud vektorruum $$V/W$$, mille
skalaarid on $$V$$ skalaarid ja
vektorid on faktorhulga $$V/\sim$$ elemendid, kus
ekvivalents $$\sim$$ defineeritakse seosega
$$v_1\sim v_2\; \equiv\; v_1-v_2\in W$$
= the vector space V/W formed from the vector space V and its subspace W, whose scalars are the scalars of V and the vectors are the elements of the factorial set V/∼

ülevaateid
https://mathworld.wolfram.com/QuotientSpace.html

https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)

https://en.wikipedia.org/wiki/Quotient_space_(topology)

Palun oodake...

# faktorruum

olemus
vektorruumist $$V$$ ja tema alamruumist $$W$$
moodustatud vektorruum $$V/W$$, mille
skalaarid on $$V$$ skalaarid ja
vektorid on faktorhulga $$V/\sim$$ elemendid, kus
ekvivalents $$\sim$$ defineeritakse seosega
$$v_1\sim v_2\; \equiv\; v_1-v_2\in W$$
= the vector space V/W formed from the vector space V and its subspace W, whose scalars are the scalars of V and the vectors are the elements of the factorial set V/∼

ülevaateid
https://mathworld.wolfram.com/QuotientSpace.html

https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)

https://en.wikipedia.org/wiki/Quotient_space_(topology)

Andmete allalaadimisel või töötlemisel esines tehniline tõrge.
Vabandame!