Lebesgue outer measure
Lebesgue'i välismõõt
olemus
reaalarvude hulgas \(\mathbb{R}\)
lahtiste lõikude \((a_i,b_i) =\{ r\in\mathbb{R}\colon a_i < r < b_i\}\)
abil defineeritud välismõõt
\(\lambda(A)= \inf_{\mathscr{C}}\limits\{\sum_{i=1}^\infty(b_i-a_i)\colon \mathscr{C}=\{(a_i,b_i)\}_{i\in\mathbb{N}}\;, \; A\subseteq \cup_{i=1}^\infty (a_i, b_i)\}\)
st \(\lambda(A)\) on hulga \(A\) kõikvõimalike loenduvate
lahtistest lõikudest koosnevate katete \(\mathscr{C}\)
summaarsete pikkuste alaraja
=
the outer measure that is defined in the set of real numbers by means of open segments
ülevaateid
https://math.stackexchange.com/questions/26676/what-is-the-difference-between-outer-measure-and-lebesgue-measure
https://www.kuk.ac.in/userfiles/file/distance_education/Year-2011-2012/Lecture-5%20(Paper%201).pdf
http://mathonline.wikidot.com/the-lebesgue-outer-measure
http://math.gmu.edu/~dwalnut/teach/Math776/Spring11/776s11lec03_notes.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/2-2.pdf
https://web.ma.utexas.edu/users/drp/files/Fall2020Projects/[Keith,%20Michael]%20An%20Intuitive%20Guide%20to%20Lebesgue%20Measure20201207%20-%20Michael%20Keith.pdf
vt ka
- Lebesgue'i mõõt