# täielik mõõt

olemus
mõõt $$\mu$$ mõõduruumis $$(X,\Sigma,\mu)$$,
mille iga nullhulga $$N$$ mis tahes alamhulk $$S$$
on mõõtuv, st
kui $$S\subseteq N\in\Sigma$$ ja $$\mu(N)=0$$, siis $$S\in\Sigma$$

Wiktionary:
(mathematical analysis) a measure such that, for every set of measure zero belonging to its domain, all subsets of that set are also assigned measure zero by the given measure

ülevaateid
https://en.wikipedia.org/wiki/Complete_measure

https://www.encyclopediaofmath.org/index.php/Complete_measure

https://people.math.gatech.edu/~heil/6337/spring11/section2.4.pdf

# täielik mõõt

olemus
mõõt $$\mu$$ mõõduruumis $$(X,\Sigma,\mu)$$,
mille iga nullhulga $$N$$ mis tahes alamhulk $$S$$
on mõõtuv, st
kui $$S\subseteq N\in\Sigma$$ ja $$\mu(N)=0$$, siis $$S\in\Sigma$$

Wiktionary:
(mathematical analysis) a measure such that, for every set of measure zero belonging to its domain, all subsets of that set are also assigned measure zero by the given measure

ülevaateid
https://en.wikipedia.org/wiki/Complete_measure

https://www.encyclopediaofmath.org/index.php/Complete_measure

https://people.math.gatech.edu/~heil/6337/spring11/section2.4.pdf

Palun oodake...

# täielik mõõt

olemus
mõõt $$\mu$$ mõõduruumis $$(X,\Sigma,\mu)$$,
mille iga nullhulga $$N$$ mis tahes alamhulk $$S$$
on mõõtuv, st
kui $$S\subseteq N\in\Sigma$$ ja $$\mu(N)=0$$, siis $$S\in\Sigma$$

Wiktionary:
(mathematical analysis) a measure such that, for every set of measure zero belonging to its domain, all subsets of that set are also assigned measure zero by the given measure

ülevaateid
https://en.wikipedia.org/wiki/Complete_measure

https://www.encyclopediaofmath.org/index.php/Complete_measure

https://people.math.gatech.edu/~heil/6337/spring11/section2.4.pdf

Andmete allalaadimisel või töötlemisel esines tehniline tõrge.
Vabandame!